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In 2016, more than 14,000 people in the United States were shot 
and killed by another person, while another 70,000 were wounded 
by guns in assaults1,2. Gun violence and its effects are not evenly 

distributed across the population, however. The trauma and con-
sequences associated with gun violence disproportionately affect 
young minority men in socially and economically disadvantaged 
neighbourhoods1,3–5. Recent research demonstrates that gunshot 
victimization further concentrates in small, circumscribed social 
networks within high-risk populations6–8. For example, 70% of all 
victims of non-fatal gunshot injuries in Chicago could be located 
in a co-arrest network comprising less than 5% of the city’s popula-
tion7. A study of a high-crime Boston community found that nearly 
85% of all victims of fatal and non-fatal gunshot injuries could 
be located in a network comprising 763 connected individuals8. 
Importantly, the structure of such social networks and individuals’ 
placement within them can severely elevate the risk of victimization 
and contribute to the diffusion of violence. Cascades of gun violence 
within high-risk networks starting with one victim whose associate 
is subsequently victimized, and so on, accounted for 63% of victim-
izations over an eight-year period in Chicago9.

The concentration of gun violence in social networks has 
implications for gun violence reduction efforts to the extent that 
identifying and leveraging such networks might enhance violence 
prevention and reduction practices. Many violence reduction 
efforts already implicitly or explicitly rely on this sort of networked 
logic, by concentrating efforts on high-risk individuals and groups 
within small geographic areas. The central premise of such pro-
grammes is that gun violence might be reduced by dissuading 
specific individuals or groups from involvement in violence, by pro-
viding information, resources, mediation or other services directly 
to those at the highest levels of involvement in gun crime and vio-
lence10,11. Furthermore, some programmes implicitly seek to engen-
der spillover effects on unassigned individuals by placing outreach 
workers and mediators into the networks of individuals involved in 
violent disputes12,13, or else by encouraging individuals who are part 
of interventions to propagate a programme’s message within their 
personal networks14.

While mounting evidence suggests that gun violence reduction 
programmes focusing on small geographic areas or a small num-
ber of groups are effective in reducing aggregate levels of gunshot 
violence15,16, we know little about the magnitude of programme 
effects on treated individuals and even less about whether victim-
ization can be reduced through network spillover effects. To date, 
most evaluations have analysed aggregate levels of gun violence 
either in geographic regions or among specific groups or gangs in 
which a programme has been implemented, comparing the fre-
quency of victimization before and after implementation17. Such 
aggregated approaches are limited in estimating the magnitude of 
the effect on treated individuals because they capture victimization 
outcomes among individuals unaffected by the programme while 
being affected by shifts in the incidence of gunshot violence caused 
by exogenous, non-programme-related factors18,19. In addition, it 
has been difficult to test whether programmes reduce victimization 
among untreated but potentially affected individuals through spill-
over effects, largely because it has been infeasible to identify such 
individuals and difficult to establish a causal framework for estimat-
ing spillover20. As such, a central question of precisely how violence 
reduction programmes reduce the incidence of gunshot victimiza-
tion remains open.

The intervention we report attempted to reduce gunshot vic-
timization among high-risk participants, as well as among their 
unassigned peers, through spillover effects. The programme is an 
‘induction intervention’21,22 that attempted to activate peer-to-peer 
diffusion of a desistance message by encouraging intervention par-
ticipants to spread a behavioural stimulus.

For the intervention, a group comprising law enforcement, com-
munity members and social service agencies carried out an exercise 
to map violent conflicts, disputes and episodes of gun violence to 
identify individuals at high risk of involvement in group-involved 
gun violence23. These individuals were subsequently invited to 
attend a one-hour meeting24,25. At these meetings, which were held 
in-person at a public location such as a local park district, school 
or community centre, participants engaged in a four-stage pro-
cess. First, law enforcement officers delivered a message that the  
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individual is at acute risk of victimization and that further involve-
ment in gun violence would be met with coordinated enforcement 
action and criminal justice sanctions. Second, community represen-
tatives emphasized that the participant is valued by their community 
and extended an invitation for the participant to become involved 
in positive community activities to avoid victimization. Third, in 
a process akin to perspective-taking26, victims or relatives of vic-
tims of gunshot violence recounted the effects and trauma associ-
ated with gun victimization. Lastly, participants were offered direct 
links to local social service provision. Throughout the meeting, par-
ticipants were encouraged to spread the desistance and community 
message, perspective-taking and service provision information to 
their peers27–29. See Supplementary Notes for further programme 
information. Invited individuals may or may not attend the meet-
ing, and are designated compliant or non-compliant accordingly. 
There are no punitive consequences for non-compliance.

To estimate the effects of these meetings, we conducted a quasi-
experimental evaluation using participation data and administra-
tive data. We first identified those individuals who were invited to, 
and attended, a meeting (n = 1,642) and those who were invited, but 
not did not attend, a meeting (n = 707), whom we call compliant 
and non-compliant seeds, respectively. We then constructed a co-
arrest network30 around each compliant and non-compliant seed, 
where each seed is connected to all non-invited individuals along-
side whom they were arrested in the three years before the meeting. 
We define an exposure mapping31,32 in which unassigned individu-
als are designated as either compliant peers (n = 3,034) if they are 
connected to a compliant seed—and therefore potentially exposed 
to the intervention message—or non-compliant peers (n = 3,098) 
if they are connected to a non-compliant seed (see Supplementary 
Table 1 for a summary of seed and peer units’ covariate profiles). To 
estimate the main effect of the meeting, we compared victimization 
outcomes in the two years following invitation to the programme 
for the compliant seeds against the non-compliant seeds. To esti-
mate the spillover effect, we compared victimization outcomes in 
the two years after potential exposure to the intervention message 
for the compliant peers against the non-compliant peers. Figure 1 
shows the identification of peer units and the comparisons for the 
main effect and spillover effect. For each peer, potential exposure 
to spillover begins on the day that the seed to whom that peer is 
connected was invited to attend a meeting. Finally, to test the spill-
over effect under additional exposure to programme participants, 
we compared victimization outcomes for peers with connections to 
two or more compliant seeds and those connected to two or more 
non-compliant seeds.

By linking programme assignment data with administrative data 
on the networks of participants and their associates, we are able to 
map potential pathways of diffusion and thereby determine whether 
gunshot victimization is reduced among individuals assigned to the 
programme, and among individuals indirectly exposed to treat-
ment through their network connections. One research design fea-
ture warrants further exposition. The programme uses non-random 
assignment and selects individuals deemed to be at high risk of vic-
timization. As such, we could not compare those assigned to attend 
a meeting against a random selection from the wider Chicago popu-
lation (see Supplementary Results for details). Exploiting non-com-
pliance with the programme permits a comparison among units 
deemed to be similarly high-risk ex ante. However, we cannot be 
certain that the choice to comply or not comply with the interven-
tion is unconfounded with the risk of victimization. In estimating 
the effects of the intervention on compliant seeds, we must therefore 
account for the probability of selection into the compliant or non-
compliant condition. Moreover, because the risk of victimization 
among connected peers and seeds is plausibly associated, we must 
also account for the probability of being connected to a compliant 
or non-compliant seed.

To address this problem of confounding, we estimate the effect 
of compliance on victimization outcomes conditional on observed 
covariates using Bayesian additive regression trees (BART). BART 
has been shown to be more accurate than propensity score-based 
estimators in estimating treatment effects under confounding, par-
ticularly when the parametric relationship between the outcome, 
treatment and confounders is unknown33. This is in part because 
BART naturally allows for possible interaction effects and nonlin-
earities in this relationship33–35. We then compare the BART estimate 
to a simple difference-in-means (DIM). We use this comparison to 
assess the proportion of the observed difference in victimization 
outcomes that is attributed to the compliance and spillover effects 
after adjusting for confounding due to selection into compliance. 
Finally, as an extension, we use the flexible BART approach to esti-
mate the heterogeneity of the compliance effect. In Supplementary 
Results, we show further estimates of the compliance and spill-
over effects using a more conventional logistic regression model 
with unit re-weighting based on entropy balancing (EBAL)36. See 
Methods for further design and estimation details.

Results
Compliance effect on victimization. Compliance reduced the 
probability of gunshot victimization in the two years after attend-
ing an intervention meeting. The share of non-compliant individu-
als who were victimized in the two years following non-attendance 
was 18.1%; for compliant individuals, the corresponding share was 
10.6%. From the BART model, we estimate that compliance caused 
a median reduction in the chance of victimization of −3.2 percent-
age points (Fig. 2; mean estimate, −3.2, credible interval, −4.9 to 
−1.4). The magnitude of this reduction is substantially larger in 
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Fig. 1 | Design of the intervention evaluation. a, Individuals at high risk 
of gunshot victimization (seeds) are assigned to the programme and 
classified as either compliant or non-compliant. b, Each seed is identified 
in the Chicago co-arrest network. We apply our exposure mapping, 
classifying individuals adjacent to a compliant seed as compliant peers and 
those adjacent to a non-compliant seed as non-compliant peers.  
c, The compliance effect is based on a comparison of victimization 
outcomes in the two years after assignment for seeds in the compliant and 
non-compliant conditions. The spillover effect is based on the equivalent 
comparison among peers.
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the DIM model (estimate, −7.5, confidence interval, −10.7 to −4.3, 
P < 0.001), which does not adjust for selection into compliance and 
simply reflects the 7.5-percentage point difference between com-
pliant and non-compliant units in post-intervention victimization 
outcomes. The reduced effect size estimate in the BART model 
shows that adjusting for selection into compliance accounts for part 
of this difference in observed victimization outcomes. The BART 
estimate attributes 42.6% of the difference in victimization out-
comes to the effect of compliance. The estimated reduction in vic-
timization caused by compliance is supported in the EBAL model 
(see Supplementary Results).

Spillover effect on victimization. Analysis of peer outcomes 
showed that units with a social connection to a compliant seed had 
a lower rate of victimization than those with a connection to a non-
compliant seed. In the two years following potential exposure to 
programme spillover effects, the share of non-compliant peers vic-
timized was 9.7% compared to 7.5% among compliant peers. From 
the BART model, we estimate that compliance spillover caused a 
median reduction in the probability of victimization of 1.5 percent-
age points (Fig. 2; mean estimate, −1.4, credible interval, −2.5 to 
−0.2). The magnitude of the spillover effect is approximately 0.47 
as large as the primary compliance effect. The effect size in the 
unadjusted DIM model (estimate, −2.2, confidence interval, −3.6 
to −0.8, P = 0.0024) reflects the raw 2.2-percentage points differ-
ence in victimization outcomes. The effect size is tempered in the 
BART model, which attributed 69% of the difference in outcomes to 
the effects of intervention spillover. The attribution of some of the 
difference in victimization to pre-intervention differences between 
compliant and non-compliant peers, rather than to spillover effects, 
implies that differential selection into compliance among seeds is 
informative for characterizing the risk of peer victimization. That 
is, both non-compliant seeds and the peers of non-compliant seeds 
appear to have a higher baseline risk of victimization than their com-
pliant counterparts. Notably, although similar in magnitude to the 
BART estimate, there is considerably greater uncertainty around the 

spillover effect estimates (estimate, −1.2, confidence interval, −2.7 
to 0.3, P = 0.1178) in the EBAL model (see Supplementary Results).

Heterogeneity of compliance and spillover effects. To assess the 
extent to which the compliance and spillovers effect resulted in 
similar reductions in the risk of victimization among all compliant 
seeds and compliant peers, we used the BART models to estimate the 
effect for each seed and peer as a function of their baseline covari-
ate profile. This is a natural extension of BART, which allows for 
variation in the treatment effect across covariates33,35. The primary 
effect of compliance on the probability of victimization ranges from 
−5.8 to −1.0 percentage points, at the extremes (Fig. 3a). Overall, 
however, our analysis shows little heterogeneity in the compliance 
effect, with 46.1% of units falling within ±0.5 percentage points of 
the median estimated compliance effect and 74.9% of units falling 
within ±1 percentage point. Similarly, the spillover effect of compli-
ance is largely homogenous (Fig. 3b), ranging from −3.6 to −0.0 
with 61.7 and 87.0% falling within ±0.5 and ±1 percentage points 
of the median spillover effect, respectively. Thus, there is little evi-
dence to suggest that the primary compliance and spillover effects 
are moderated by the covariate profile of compliant seeds or peers 
to a degree that would warrant restructuring of the intervention for 
particular subgroups of assigned individuals.

Spillover effect of multiple exposures. Our results so far show that 
compliance reduces the probability of victimization among seeds 
and that compliance spillover effects reduce the probability of vic-
timization among peers. As a further test of the spillover effects of 
compliance, we compared victimization outcomes among the sub-
set of peers with exposure to either two compliant seeds (n = 200) 
or two non-compliant seeds (n = 350). In the two years following 
exposure, 12% of peers with connections to two compliant seeds 
and 10.6% of peers connected to two non-compliant seeds were vic-
timized (see Supplementary Results). Thus, the victimization rate 
was higher among peers with a double exposure to compliant seeds 
than among those with a double exposure to non-compliant seeds. 
Additionally, the incidence of victimization was higher among peers 
with exposure to two seeds than among those with a single exposure 
(Supplementary Fig. 3). Peers with two or more exposures exhibit 
a different pre-intervention covariate profile in terms of age, gen-
der and gang membership, as well as having a higher incidence of 
victimization and arrest among their co-arrestees than peers with 
a single exposure. From BART Model 1, we estimate that peers 
with a double-compliant exposure had a median −0.1 percentage 
points lower probability of victimization (mean, 0.0, credible inter-
val, −0.6 to 1.8). However, the credible interval for the estimated 
effect includes zero with considerable posterior mass at both posi-
tive and negative values (Supplementary Fig. 4). We therefore have 
insufficient information to ascertain whether double exposure to 
compliant seeds increases, reduces or does not affect the probability 
of victimization relative to double exposure to non-compliant seeds.

Expected victimizations under the counterfactual. The parameter 
estimates support the idea that the violence reduction programme 
reduced the probability of victimization among both seeds and 
peers. However, the magnitude of the reduction among peers that is 
attributable to spillover effects is small in absolute terms: a median 
reduction in the probability of victimization of 1.5 percentage points 
(Fig. 2), with 25.7% of peers experiencing a spillover effect that is 
smaller in magnitude (that is, closer to zero) than one percentage 
point (Fig. 2). Moreover, the P value for the spillover effect estimate 
is >0.05 in the EBAL model, which imposes a stronger parametric 
form on the relationship between victimization, compliance and 
the observed covariates than the BART model (see Supplementary 
Results). To put the magnitude of this effect into context, 174 of 
the 1,642 seeds who complied with the intervention were victimized  
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Fig. 2 | the estimated effect of compliance on programme seeds 
(n = 2,349) and the estimated effect of compliance spillover on 
programme peers (n = 6,132). DIM is the mean difference in the two-
year probability of victimization for individuals in the compliant versus 
non-compliant condition. The BART model is a non-parametric estimate 
of the conditional average treatment effect of compliance, accounting 
for observed covariates. A 95% confidence interval is shown for the DIM 
estimate, and a 95% credible interval for the BART estimate.
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in the two years after compliance. In the counterfactual condition in 
which these seeds did not comply, our BART effect estimate implies 
that 227 (lower bound, 196, upper bound, 255) might have been vic-
timized. For the compliance spillover effect, 228 of the 3,034 peers 
of compliant seeds were victimized in the two years after poten-
tial exposure to the programme. In the counterfactual condition 
in which those peers were connected to non-compliant seeds, our 
BART effect estimate implies that 273 (lower bound, 234, upper 
bound, 304) might have been victimized by gunshot violence. Our 
estimates therefore indicate that 53 victimizations were averted as 
a product of the primary effect and a further 45 through spillover 
effects, albeit with considerable uncertainty around these estimates. 
In summary, these findings imply that, by holding call-in meetings 
with 1,642 individuals in high-risk social networks for whom we 
could identify 3,034 peers, the programme contributed to approxi-
mately 98 fewer gunshot victimizations.

Discussion
Gun violence prevention, intervention and treatment programmes 
are increasingly directing their efforts toward the small networks 
and geographical areas disproportionately impacted by gunshot 
victimization and associated trauma. Although a networked logic 
drives many such programmes, most evaluations to date have ana-
lysed changes in aggregate rates of victimization or crime before 
and after programme implementation, paying little attention to the 
direct effects on individuals who are assigned to such programmes 
let alone the spillover effects that are theoretically deemed to be 
responsible for reductions in gun violence.

This study analysed a field intervention in Chicago that focused 
on high-risk individuals who were actively involved in ongoing 
disputes. Using a quasi-experimental design and data on co-arrest 
network ties, we evaluated the direct effect on those participating 
in the intervention as well as the spillover effect on their unas-
signed co-arrest associates. Our findings show that participation in 
the intervention reduced gunshot victimization by 3.2 percentage 
points over two years. At the same time, potential spillover reduced 
victimization by 1.5 percentage points among the unassigned asso-
ciates of intervention participants. However, we did not detect a 

spillover effect among the subset of peers who were connected to 
two or more compliant intervention participants. While the absence 
of a detectable effect may be due to the relatively small number of 
peers in this subset, it could also be due to a difference between indi-
viduals with exposure to two or more seeds and those with a single 
exposure. For example, individuals with greater seed exposure may 
be involved in higher-risk networks, as indicated by the greater inci-
dence of victimization among peers with two exposures compared 
to those with one, and they may be less amenable to a behavioural 
shift in response to the intervention (see Supplementary Results).

Unlike many public health interventions37, gun violence reduc-
tion programmes seldom utilize formal network metrics for the 
selection of participants. Consistent with several recent evaluations 
of networked interventions31,38–40, our findings suggest that engag-
ing the social networks of intervention participants can yield strong 
direct effects as well as a potential amplification of programme 
effects via treatment spillover. While the intervention directly 
treated 1,642 individuals, the structure of the co-arrest network 
expanded the potential reach of the programme to an additional 
3,034 indirectly treated individuals—a 1.8-fold expansion of the 
affected population. In total, our findings imply that direct and 
spillover effects resulted in approximately 98 fewer gunshot victim-
izations over two years. However, it is worth noting that co-arrests 
are unlikely to capture all peers of programme participants, which 
could result in the total reduction being underestimated. Moreover, 
because it is not possible to test whether the observed covariates 
fully account for selection into non-compliance, we cannot rule out 
the possibility that observed differences in victimization between 
compliant and non-compliant seeds could be due to factors outside 
of the programme effects. Such factors could extend to the differ-
ence in victimization between compliant and non-compliant peers 
if peers are more likely to associate with seeds who have a similar 
latent risk of victimization41. Our findings nevertheless imply that 
further resources should be allocated to non-compliant individuals 
who exhibit considerably higher rates of victimization.

Programmes like the one studied here are not a panacea for gun 
violence. Based on the mean two-year incidence of gunshot victim-
ization in Chicago during the period 2010–2016, the programme 
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effects equate to a reduction of roughly 1.5% in city-wide gun vic-
timization. However, the results suggest that violence reduction 
programmes can have a substantial impact on the incidence of vic-
timization among targeted high-risk individuals and their peers. 
The programme is scalable and, importantly, it minimizes tradi-
tional law enforcement responses that can have a negative impact 
on communities42, especially incarceration. Our evidence suggests 
that gun violence interventions might amplify programmatic effects 
if designed more explicitly around maximizing network diffu-
sion21,43,44. For example, street outreach13 or hospital intervention 
programmes11 might use formal network analytics to guide their 
efforts and place workers into those parts of a network or neigh-
bourhood experiencing acute rates of gun violence.

Field interventions aimed at high-risk social networks have 
become a key policy tool for reducing gunshot violence. Studying 
peer effects provides an avenue for enhancing the efficacy of these 
interventions and improving our understanding of the role of social 
influence in the emergence and perpetuation of gun violence and 
violent conflict.

methods
Network exposure mapping. To measure exposure to the programme through 
social ties, we used data on 868,607 arrests in the jurisdiction of the Chicago Police 
Department from the period 2007–2017. We created a co-arrest network in which 
an edge is present between two individuals if they had been arrested together. 
We located each programme seed in the network and classified adjacent units as 
peers if those units were arrested alongside the seed at least once in the three-year 
period before the date that the seed was assigned to an intervention meeting. We 
define the exposure mapping f(z, g), where zi = {0, 1} indicates whether a unit was 
assigned to the programme, and gi = {0, 1} indicates whether a unit has a tie to a 
seed32,45. For units with zi = 1—that is, the seeds—we denote a compliance indicator 
Ci that is 1 if the unit was compliant and 0 if the unit was non-compliant. For units 
with zi = 0, gi = 1—that is, the peers—we denote a compliance indicator Cj, that is 
1 if the seed to whom the peer is connected was compliant and 0 if the seed was 
non-compliant.

For the estimate of the effect of additional spillover exposure on victimization, 
we performed a subset analysis in which we identified 550 peers with exposure to 
two seeds, zi = 0, gi ≥ 2. For units connected to three or more seeds, we considered 
only the first two exposures to maintain a suitably large n for estimation. We 
denote the compliance indicator Cj, which is 1 if the peer was connected to two 
compliant seeds and 0 if the peer was connected to two non-compliant seeds.

Identification strategy. Identifying the effect of the intervention is challenging, 
due to the non-randomized assignment protocol. As a strategy for overcoming 
this challenge, we exploited compliance and non-compliance with the 
programme (a recent study found that non-compliers and control units assigned 
by randomization had nearly identical post-assignment outcomes in a similar 
deterrence-based intervention in St. Louis46) to identify the effect of compliance 
with the programme among assigned seeds who, by virtue of their assignment, 
were deemed by the administrators of the programme to have a similar baseline 
risk of victimization ex ante47. To identify the effect of compliance with the 
programme, we compared two-year victimization outcomes among seeds zi = 1 
with Ci = 1 and Ci = 0. To identify the effect of compliance spillover, we compared 
two-year victimization outcomes among peers zi = 0, gi = 1 with Cj = 1 and Cj = 0. 
We denote the potential outcome Yi(1), which is the outcome that would be 
observed if unit i was in the compliant condition Ci = 1, and Yi(0) if unit i was in 
the non-compliant condition Ci = 0.

To estimate the compliance effect, we rely on the conditional ignorability 
assumption Yi(0), Yi(1)⊥Ci|Xi (ref. 48). That is, we assume independence between 
the potential outcomes and compliance status conditional on observed covariates 
Xi. We define the effect of compliance, τc, as the average of the conditional 
expectation,

τc ¼ E E½Yð1ÞjCi ¼ 1;Xi E½Yð0ÞjCi ¼ 0;Xi½  8 zi ¼ 1 ð1Þ

For the spillover effect, we made the analogous assumption Yi(0), Yi(1)⊥Cj|Xi, 
that is independence between the potential outcomes and the compliance status of 
the seed j to whom the peer unit i is connected conditional on the peer’s observed 
covariates Xi. We defined the spillover effect of compliance, τs = 1, as the average of 
the conditional expectation,

τs¼1 ¼ E½E½Yð1ÞjCj ¼ 1;Xi E½Yð0ÞjCj ¼ 0;Xi 8 zi ¼ 0; gi ¼ 1 ð2Þ

Finally, we defined the spillover effect of double exposure to compliance τs = 2 as 
in equation (2), substituting Zi = 0, gi ≥ 2 to restrict analysis to the subset of peers 
with connections to at least two seeds.

Suitability of the observed covariates. The identification strategy is valid if 
the observed covariates Xi provide an admissible back-door adjustment from 
the victimization outcome to compliance status49. The back-door adjustment 
is admissible if there are no unmeasured confounders of victimization and 
compliance. In practice, it is not possible to demonstrate this admissibility. As 
our outcome is gunshot victimization, we included several covariates related to 
gunshot violence50 and violence more generally, all measured pre-intervention. 
These include gunshot victimizations; arrests on violence-related charges, 
including first- and second-degree assault; and arrests on weapons-related charges, 
including carrying weapons without a permit and ownership of illegal firearms. 
To account for the risk level in the co-arrest network surrounding each unit, we 
included counts of victimizations, arrests, arrests on violence-related charges 
and arrests on weapons-related charges among adjacent units. To account for 
the connectivity of each unit, we also included degree (that is, the number of 
co-arrestees). Finally, we included age, race, gender and gang status, which are 
related to the incidence of gunshot victimization51–54. We assumed that this broad 
array of covariates adequately accounts for confounding due to selection into the 
compliant or non-compliant conditions. However, we cannot rule out unobserved 
factors that could bias the estimates, although our adjustment may partly  
reduce bias due to any unmeasured confounders that are correlated with the 
observed covariates55,56.

Estimation strategy. To estimate the compliance effect τc and spillover effect of 
compliance τs = 1 we used both BART and DIM.

BART is a sum-of-trees model that allows a flexible relationship between the 
victimization outcome Yi, compliance indicator Ci (or Cj in the case of spillover) 
and observed covariates Xi. We use this non-parametric approach to avoid 
imposing a structural form on the relationship between the compliance indicator 
and the observed covariates, avoiding researcher-imposed choices regarding the 
ways in which the covariates might be associated with selection into compliance 
and, instead, allowing automatic detection of interactions and nonlinearities in this 
relationship35. We fit the BART model using the dbarts R package34 with the default 
settings (ntrees = 200, α = 0.95, β = 2), 1,000 burn-in Markov chain Monte Carlo 
iterations and 5,000 posterior samples.

We contrast this approach with a simple DIM,

Yi ¼ αþ Ci 8Zi ¼ 1 ð3Þ

where α is an intercept and Ci is the compliance indicator. Similarly, for the 
spillover effect we estimate,

Yi ¼ αþ Cj 8Zi ¼ 0; gi ¼ 1 ð4Þ

where Cj is the indicator for the compliance status of the seed to whom the peer is 
connected. This model simply compares the average probability of victimization 
within the compliant and non-compliant conditions without adjustment for 
confounding. By contrasting the results between BART and the DIM model, we 
are able to gauge the extent to which the relationship between the victimization 
outcomes Yi and compliance status Ci (Cj for spillover) is moderated by the 
covariates Xi. Reported P values for the compliance and spillover DIM estimates  
are based on two-tailed tests.

To further assess the effect estimates, we compared the results from BART to 
those of a model that weights units based on covariate balancing propensity scores. 
See Supplementary Information for further details.

Estimating heterogenous effects. The BART model naturally detects interactions 
between the compliance indicator and observed covariates33. To estimate the 
heterogeneity of the compliance and spillover effects, we used the fitted BART 
model to estimate the conditional average treatment effect (CATE) of compliance 
on each unit as a function of that unit’s covariate profile. For the main effect we 
duplicated the seed covariate data into two N × K matrices, where N is the number 
of seeds and K is the number of covariates. We set the compliance indicator to 1 in 
the first matrix and 0 in the second. We then took 1,000 posterior draws for each 
matrix from the fitted model and subtracted the second matrix from the first. The 
CATE is calculated by taking the mean of the rows, while the 95% uncertainty 
bounds are calculated by taking the 0.025 and 0.975 quantiles35. We repeated this 
process for the spillover effect, substituting in the peer covariate data and the fitted 
spillover BART model.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The original data used in this study were provided to the corresponding author 
as part of a data-sharing agreement with the City of Chicago and the Chicago 
Police Department, and are prohibited from being shared directly. De-identified 
replication data generated and analysed in this study are available from the 
corresponding author upon request.
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Code availability
All analyses were carried out in R. Code for reproducing the results of this study is 
available from the corresponding author upon request.
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Sampling strategy The sampling procedure is a community-led partnership with law enforcement to identify individuals at high-risk of victimization. The 
authors did not design or participate in the sampling strategy.

Data collection Three primary data sources are used: CPD arrest records, CPD gunshot victimization records, and intervention assignment and 
compliance data. The arrest records and gunshot victimization records are routinely collected by the CPD and were supplied to the 
researchers directly by the CPD. The assignment data were collected by the intervention team and supplied directly to the researchers. 
Being routinely collected by the CPD, the outcome data (victimization) is not influenced by the research hypothesis.

Timing The arrest data covers the period August 2007 to May 2017. The victimization data covers the period August 2007 to November 2018. 
Assignment and compliance data collected August 2010 to June 2016.

Data exclusions No data were excluded from the analysis.

Non-participation Non-compliant units are included in our research design.
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Recruitment Participants were invited to an intervention by a collaborative group who determined the participants to be at high-risk of 
victimization. We compared units who complied (attended the intervention) against units who did not comply. There is a 
possibility for selection bias if compliance or non-compliance is associated with the risk of victimization. Our estimation strategy 
was designed to mitigate this selection bias. We adjusted for a broad array of covariates which may confound victimization and 
compliance. We re-weighted units to provide an estimate of the effects conditional on the observed covariates. There is the 
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possibility for remaining selection bias if there are unobserved covariates which confound victimization and compliance, 
particularly if these are uncorrelated with the observed covariates adjusted for in the study. This is untestable using available 
data. We discuss this in more detail in the manuscript and Supplementary Information.
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