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Abstract 

 

To what degree does social distancing have a causal effect on the spread of SARS-CoV-

2? To generate causal evidence, we show that week to week changes in weather conditions 

provided a natural experiment that altered daily travel and movement outside the home, and thus 

affected social distancing in the first several weeks when Covid-19 began to spread in many U.S. 

counties. Using aggregated mobile phone location data and leveraging changes in social 

distancing driven by weekly weather conditions, we provide the first causal evidence on the 

effect of social distancing on the spread of SARS-CoV-2. Results show that a 1 percent increase 

in distance traveled leads to an 8.1 percent increase in new cases per capita in the following 

week, and a 1 percent increase in non-essential visits leads to a 6.9 percent increase in new cases 

per capita in the following week. Results are stronger in densely populated counties and close to 

zero in less densely populated counties.   

  



 

The Causal Effect of Social Distancing on the Spread of SARS-CoV-2 

 

In the absence of a vaccine or therapeutic treatment, social distancing has become the 

primary non-pharmaceutical intervention (NPI) to control the spread of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). Cities, counties and states in the United States have 

adopted a range of efforts designed to limit travel, large groups, and face-to-face interaction in 

schools, workplaces, business establishments, and public spaces.  

The staggering scale of behavioral change is unprecedented in modern American history. 

Considering the economic and social costs of social distancing and the disruption to everyday 

life, it is crucial to generate rigorous, causal evidence assessing the effect of social distancing in 

limiting the spread of SARS-CoV-2. Existing evidence comes from well-established 

epidemiological models of infection1-4 and innovative observational evidence from historical 

pandemics.5-9 However, we are aware of no research that relies on data from this pandemic and 

provides convincing causal evidence on a basic yet essential question: To what degree does 

social distancing have a causal effect on the spread of SARS-CoV-2?  

This study develops a method designed to generate causal evidence to estimate the 

impact of social distancing on the spread of SARS-CoV-2. We draw on mobile phone location 

data to measure changes in total distance traveled and visits to non-essential establishments 

within counties, which we merge with county-level information on confirmed cases of SARS-

CoV-2.  

Simply documenting the association between changes in social distancing and the spread 

of SARS-CoV-2 will generate biased results because the greatest changes in behavior have taken 

place in the areas hit hardest by the virus, leading to a spurious positive association between 



 

distancing and growth in SARS-CoV-2. To generate causal evidence we rely on an exogenous 

source of variation in social distancing: daily weather conditions. We show that week to week 

changes in precipitation provided a natural experiment that altered daily travel and movement 

outside the home, and thus affected social distancing in the early weeks of the Covid-19 outbreak 

in the U.S. By leveraging changes in social distancing driven by weekly precipitation, this 

method allows us to identify the causal effect of social distancing on the spread of SARS-CoV-2.  

 

Data and Methods 

We combine data sources on confirmed cases of SARS-CoV-2, social distancing, weather 

conditions, and population characteristics in U.S. counties. Due to inconsistencies in data 

sources, we include only the contiguous 48 states.  

SARS-CoV-2 cases. We measure growth in confirmed cases using data from the 

Coronavirus Resource Center run by the Center for Systems Science and Engineering (CSSE) at 

Johns Hopkins University.10 Data from U.S. counties run from January 22 through April 23, 

2020. The resource center defines confirmed cases to include presumptive positive cases and 

probable cases, consistent with guidelines established by the CDC. We include all measures of 

confirmed cases with a county identifier.  

Social distancing. Data on social distancing were provided by Unacast at the level of U.S. 

counties. Unacast analyzes human mobility through location data available via mobile phones. 

The dataset begins on February 4 and runs through April 23, 2020. All measures of social 

distancing capture change in movement relative to a baseline period covering the four weeks 

prior to March 8, 2020. The dataset is based on 15 to 17 million unique “identifiers” per day, 

aggregated to the level of US counties.   



 

We use two measures of social distancing. First, change in the average distance traveled 

per user, measured as the percentage change relative to the baseline period. Second, change in 

visitation to non-essential venues, including (but not limited to) restaurants, department and 

clothing stores, jewelers, consumer electronics stores, office supply stores, spas and hair salons, 

fitness centers, car dealerships, hotels, craft and hobby shops. Change in non-essential visits is 

also measured as the percentage change relative to the baseline period. Weekly measures used in 

all models represent the average change in distance traveled and the average change in non-

essential visits, respectively, over the calendar week. Aggregating by week is important because 

of substantial day of the week effects on social distancing. By averaging over a full calendar 

week we eliminate any variation due to the specific days of the week in which distancing is 

measured.  

Weather. Daily precipitation, relative humidity, and temperature data were obtained from 

the National Oceanic and Atmospheric Administration (NOAA) National Centers for 

Environmental Prediction. Precipitation (mm) is measured at 0.25 resolution (0.25 degree 

longitude by 0.25 degree latitude) across the contiguous United States. Our main analyses use a 

dichotomous measure of any precipitation in a given day rather than total amount of 

precipitation—results are the same using either measure. Relative humidity (%) is measured at 

2.5 resolution and temperature (C) at 0.25 resolution. We rasterized the weather data into cells 

and calculated the total precipitation, mean relative humidity, and maximum temperature per day 

within each county. As with all variables, each measure is averaged over calendar weeks. 

Precipitation thus represents the percentage of days in the week with any precipitation, high 

temperature and relative humidity measure the average high temperature and average level of 

relative humidity over the week.   



 

 

Empirical strategy 

Our analysis builds on a common approach to modeling growth in infectious diseases 

within areas through the use of time series methods that adjust for contagion and autocorrelation 

across time periods.11,12 However, we adapt these approaches to generate causal evidence on the 

impact of social distancing.  

Identifying the causal effect of social distancing on the spread of SARS-CoV-2 is 

challenging for two reasons. First, counties where residents make more substantial changes to 

their daily patterns of movement in response to the pandemic likely differ in unobserved ways 

from counties where residents make less dramatic changes. For this reason, analyses comparing 

counties with more or less social distancing will generate biased estimates even when matching 

or controlling for observable characteristics of counties. 

A second problem is that changes in behavior are driven, in part, by the spread of the 

virus. In the language of causal inference, social distancing is endogenous. This means that 

residents in areas where the virus is spreading more rapidly are more likely to make more 

substantial changes in behavior, leading to a spurious positive association between social 

distancing and the spread of SARS-CoV-2. 

To deal with both of these challenges we carry out an analysis of change within counties 

using county fixed effects, and we exploit an exogenous source of variation in social distancing 

arising from weather patterns.13,14 We utilize two stage least squares (2SLS) to carry out the 

analysis, with precipitation and temperature over a given week used as an instrumental variable 

that creates exogenous variation in social distancing in the same week.15,16 Further, we control 



 

for the existing cases in the county, for relative humidity and for time trends. eFigure 1 in the 

supplement to the article describes the logic of the analysis in a causal diagram.  

The analysis is represented with the following system of equations.  

 

(1) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝑐,𝑡−1 =  𝛼 +  𝑅𝑎𝑖𝑛𝑐,𝑡−1 +  𝑇𝑒𝑚𝑝𝑐,𝑡−1 + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑐,𝑡−1 +  𝐶𝑎𝑠𝑒𝑠𝑐,𝑡−1 +

𝐶𝑐 + 𝑊𝑒𝑒𝑘𝑡 +  𝜂𝑐𝑡 

(2) 𝐶𝑎𝑠𝑒𝑠𝑐𝑡     =  𝛼 +  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝑐,𝑡−1 + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑐,𝑡−1 +  𝐶𝑎𝑠𝑒𝑠𝑐,𝑡−1 + 𝐶𝑐 +  𝑊𝑒𝑒𝑘𝑡 +

 𝑒𝑐𝑡  

 

In Equation 1, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝑐𝑡 is the measure of social distancing in county c in week t-1, the 

week prior to the measurement of the outcome;  𝑅𝑎𝑖𝑛𝑐,𝑡−1 represents precipitation, measured as 

the percentage of days in the prior week (t-1) with any precipitation in county c; 

 𝑇𝑒𝑚𝑝𝑐,𝑡−1 represents the high temperature, measured as the average high temperature in the 

prior week (t-1) in county c. Rainfall and temperature are used as instruments that generate 

exogenous variation in social distancing in week t-1.  𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑐,𝑡−1 represents the relative 

humidity, measured as the average in the prior week (t-1) in county c and used as a control 

variable;  𝐶𝑎𝑠𝑒𝑠𝑐,𝑡−1 represents the natural log of the number of existing cases in the county in 

the prior week (t-1) per capita in county c; 𝐶𝑐 is a vector of dummy indicators for each county; 

 𝑊𝑒𝑒𝑘𝑡 is a vector of dummy indicators for the calendar week; and  𝜂𝑐𝑡 is an idiosyncratic error 

term for county c and calendar week t.  

To identify the effect of social distancing in week t-1 on new cases in week t we estimate 

Equation 2 using two stage least squares, where social distancing is instrumented with 

precipitation and temperature. The outcome, growth in confirmed cases of SARS-CoV-2, is 



 

measured as the natural log of new cases per capita, in week t. We estimated standard county 

fixed effects and first difference models, both of which effectively deal with unobserved, time-

invariant aspects of counties. In models shown in the text we use first differences because they 

are more efficient and align with the model of contagion more intuitively. We use population 

weights to improve the precision of the estimates. All estimates adjust for heteroskedasticity, for 

autocorrelation, and for other forms of clustering of residuals within counties.  

Two central assumptions must be met in order to interpret the coefficient from the 2SLS 

estimate as causal. First, weather conditions must induce a change in social distancing behavior. 

To check this assumption, we report results from Equation 1 and demonstrate the strong 

relationship between weather conditions and the two measures of social distancing.  

Second, there must be no other pathway by which the instrumental variable (weather 

conditions) affects the outcome of interest (new cases of SARS-CoV-2) other than through its 

effect on social distancing. This is referred to as the exclusion restriction (Fig. S1). In our case, 

one concern is that precipitation and temperature are associated with other weather conditions, 

most notably relative humidity, that may directly affect the transmission of SARS-CoV-2. 

Although the available evidence on the relationship between humidity and the spread of this 

virus is mixed and uncertain,17-19 it is nonetheless important to address this possibility directly. 

To do so we control for relative humidity in the same week as precipitation, eliminating this 

pathway from our instrumental variable to the outcome. As we demonstrate, controlling for 

humidity has no impact on our results.  

 

Results 



 

The sample consists of 788 US counties observed over four weeks, beginning in the first 

week in which the particular county reported at least 10 confirmed cases and continuing for the 

subsequent three weeks. Counties were included in the sample if they reported at least 10 

confirmed cases by March 31, 2020, which enables us to measure growth in confirmed cases for 

at least three weeks following the tenth case. By construction, the sample is composed of larger 

counties where SARS-CoV-2 appeared relatively early in March 2020 (Table 1).  

We estimate the effect of social distancing in a given week on growth in confirmed cases 

in the following week. As noted previously, the central challenge in identifying the effect of 

distancing on new cases is that distancing is endogenous to the spread of the virus. For this 

reason, a basic regression analysis with a cross-section of counties would show that counties 

with greater social distancing have more confirmed cases, a spurious relationship. Even 

considering change within counties over time, a naïve analysis would conclude that distancing 

has no effect on the growth of confirmed cases. This conclusion is incorrect and is driven by the 

fact that distancing behavior is changing the most in places where the virus is spreading fastest.  

 

To deal with this problem we exploit an exogenous source of variation in distancing behavior 

arising from daily weather conditions. In the first stage of the model, we use precipitation and 

average high temperature in the given week to predict social distancing in the same week, while 

controlling for the log of existing cases per capita, relative humidity and the calendar week of the 

year (Table 2).  

We find that a change from no precipitation over the week to precipitation every day of 

the week leads to a 1.9 percent reduction in distance traveled (b = -1.918, 95% CI -3.458 to -

.377, p=.015), and a 1 degree increase in average high temperature leads to a .22 percent increase 



 

in distance traveled (b=.215, 95% CI .086 to .345, p=.001). Because data on non-essential visits 

is not available for 21 counties, results from the model using non-essential visits as the measure 

of social distancing are slightly different. In this model, precipitation is not strongly related to 

non-essential visits, but a one degree increase in average high temperature leads to a .32 percent 

increase in non-essential visits (b = .315, 95% CI .165 to .464, p <.001). Tests for “weak 

instruments” typically consider an F-statistic below 10 to indicate a weak instrument.20 The F-

statistic from the first stage is over 10 in both models, indicating that precipitation is strongly 

linked with social distancing behavior.  

Results presented so far indicate that weather conditions generate substantial changes in 

social distancing. Our main interest is in using this source of exogenous variation driven by 

weather patterns to identify the effect of social distancing on the spread of SARS-CoV-2 (Table 

3). We find that a 1 percent increase in distance traveled leads to an 8.1 percent increase in new 

cases per capita (b = .078, exp(b)=1.081, 95% CI .019 to .116, p=.005) in the following week 

(Table 3, top panel). Results focusing on non-essential visits show that a 1 percent increase in 

non-essential visits leads to a 6.9 percent increase in new cases per capita (b = .067, 

exp(b)=1.069, 95% CI .019 to .116, p = .006) in the following week (Table 3, bottom panel).  

We carried out an additional analysis to assess whether the effect of social distancing 

varies depending on population density. We split the counties in our sample by the median 

population density and ran the same models shown previously. We find that precipitation is an 

equally strong predictor of social distancing in more and less densely populated counties within 

our sample (Table S1 and Table S2).  

Second stage results focusing on distance traveled show no effect of social distancing in 

counties that are less densely populated (b = -.021, 95% CI -.072 to .029, p = .411) (Table S1). In 



 

more densely populated counties, we find an extremely strong effect. A one percent increase in 

distance traveled leads to a 10 percent increase in new cases per capita in the following week (b 

= .095, exp(b)=1.100, 95% CI .029 to .160, p = .004) (Table S2). In results not shown we find 

the same pattern using non-essential visits as the measure of social distancing.  

 

Discussion 

Existing evidence in support of social distancing as the primary non-pharmaceutical 

response to SARS-CoV-2 comes from sophisticated epidemiological models that rely on 

assumptions about the degree to which social distancing reduces interpersonal contact and 

infection, and from innovative observational studies of historical pandemics. No research that we 

are aware of provides direct empirical evidence identifying the causal effect of social distancing 

behavior on the spread of SARS-CoV-2. We draw on newly available mobile phone data and a 

method exploiting exogenous variation in distancing behavior within counties to generate such 

evidence.  

We find that increasing distance traveled by 1 percent leads to an 8.1 percent increase in 

confirmed cases per capita in the following week. Similarly, increasing non-essential visits by 1 

percent leads to a 6.9 percent increase in confirmed cases per capita in the following week. The 

findings are large in magnitude and robust to various adjustments to the model specification. 

It is important to note that our results are limited in several ways. First, because we draw 

on data from counties where SARS-CoV-2 appeared relatively early, results are most applicable 

to larger and more densely populated counties. We found that the estimated effects are 

particularly large in counties with high population density within our sample, and were close to 

zero in less densely populated counties. Second, we are unable to distinguish between the effects 



 

of particular NPIs designed to generate social distancing and limit movement and interaction. 

Our results do not point to specific measures as being most effective, but rather indicate that any 

NPI that limits travel and non-essential visits will likely be effective in reducing the spread of 

SARS-CoV-2. Third, the analysis does not consider the costs of social distancing. Any decisions 

about NPIs must balance the benefits of reducing the spread of the virus with the costs associated 

with the intervention.  

With those limitations in mind, the findings do provide strong support for efforts to 

control SARS-CoV-2 through policies intended to reduce non-essential travel and visits to non-

essential establishments. Such policies have been justified by results from formal modeling 

exercises and by the experience of cities during the 1918 influenza pandemic. This study shows 

that the effectiveness of non-pharmaceutical interventions focusing on reducing movement and 

interventions is bolstered with causal evidence from the early period of the current pandemic. 
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Table 1. Descriptive statistics for 788 counties included in sample

N %

First week with 10 cases

week ending March 3 2 <1%

week ending March 10 11 1%

week ending March 17 86 11%

week ending March 24 265 34%

week ending March 31 424 54%

Mean SD

Population 334,989 661,278

Growth of new cases per 100,000

week of 10th case 18.48 29.91

3 weeks after 10th case 58.56 131.94

Log growth of new cases per 100,000

week of 10th case 2.31 1.10

3 weeks after 10th case 3.23 1.28

Percentage change in distance traveled

week prior to 10th case -16.76 12.41

2 weeks after 10th case -40.31 9.03

Percentage change in non-essential visits

week prior to 10th case -33.31 20.43

2 weeks after 10th case -60.12 10.37

Precipitation (% of days with any)

week prior to 10th case 0.65 0.25

2 weeks after 10th case 0.58 0.24

High temperature (Celsius, average over week)

week prior to 10th case 15.58 7.31

2 weeks after 10th case 17.81 6.26

Relative humidity

week prior to 10th case 74.88 9.95

2 weeks after 10th case 68.96 10.88



 

 

  

Table 2. Effects of weather conditions on social distancing

First stage model outcome: Percentage change in distance traveled

b p-value

Precipitation -1.918 -3.458 -0.377 0.015

High temperature 0.215 0.086 0.345 0.001

Log cases per capita -0.052 -0.687 0.582 0.871

Relative humidity 0.006 -0.07 0.083 0.868

F statistic: 10.95

N = 2,364 county-week observations from 788 counties. 

First stage model outcome: Percentage change in non-essential visits

b p-value

Precipitation -0.687 -2.13 0.756 0.351

High temperature 0.315 0.165 0.464 <.001

Log cases per capita -0.638 -1.102 -0.173 0.007

Relative humidity 0.047 -0.002 0.097 0.058

F statistic: 15.20

N = 2,310 county-week observations from 770 counties with non-missing data on visits.  

All variables enter the model as first differences within counties. 

Models include calendar week fixed effects not shown in the table. 

Models are weighted by county population, standard errors are clustered within counties.

95% CI

95% CI



 

 

  

Table 3. Effects of change in distance traveled on new cases of Covid-19. 

Second stage model outcome: New cases in following week (natural log)

b p-value

% change in distance traveled 0.078 0.024 0.132 0.005

Log cases per capita 0.076 -0.077 0.228 0.332

Relative humidity -0.002 -0.011 0.007 0.662

Second stage model outcome: New cases in following week (natural log)

b p-value

% change in non-essential visits 0.067 0.019 0.116 0.006

Log cases per capita 0.114 -0.028 0.256 0.115

Relative humidity -0.006 -0.015 0.003 0.192

All variables enter the model as first differences within counties. 

Models include calendar week fixed effects not shown in the table. 

Models are weighted by county population, standard errors are clustered within counties.

95% CI

95% CI



 

Online Supplement 

 

Sample and robustness. Results are robust to several minor changes in the model that we 

document here. First, in alternative models we use only precipitation to instrument for social 

distancing, with no substantive differences in results. Second, alternative models did not include 

the lagged measure of existing cases. Again, findings are not sensitive to this change. Third, we 

run alternative models that exclude weeks where there were 0 new cases or a decline in cases, 

resulting in negative growth. Because we use the natural log of new cases as our outcome 

measure, we assigned a value of 1 case in this scenario in order to avoid missing data. If we 

instead treat these as missing, results do not change.  

 

Causal diagram (Figure S1). Our aim is to estimate the effect of distancing behavior within 

county c in the previous week t-1 on the number of cases in county c in week t. By focusing on 

within-county differences in distancing over time, we ensure that unobserved differences 

between counties do not bias the estimated effect. However, the extent of distancing behavior 

within a county is likely to increase contemporaneously with the frequency of recorded cases, 

leading to a spurious positive association between distancing and cases (represented by the 

dotted line connecting cases at t-1 to distancing at t-1).  

To identify the effect of distancing, we require an exogenous source of variation in 

distancing behavior in week t-1. Furthermore, this source of variation—or instrument—must 

only influence the frequency of cases in week t through its effect on distancing during t-1. We 

use weather conditions (labeled “precipitation” in the diagram) in week t-1 as the instrument, and 

show that weather conditions in week t-1 affect social distancing in the same week. However, 



 

one concern is that precipitation is associated with humidity, which may itself be related to the 

spread of SARS-CoV-2, thereby opening a “backdoor path” between precipitation and new cases 

in week t. To account for this pathway and ensure that precipitation is a valid instrument, our 

model conditions on relative humidity.  

 

 

Figure S1: Directed Acyclic Graph (DAG) showing the causal identification strategy for the 

effect of distancing on cases.  

 

  



 

 

 

Table S1. Effects of change in distance traveled on new cases of Covid-19 in low-density counties

First stage model outcome: Percentage change in distance traveled

b p-value

Precipitation -1.76 -3.046 -0.473 0.007

High temperature 0.215 0.069 0.36 0.004

Log cases per capita -0.376 -1.323 0.571 0.437

Relative humidity -0.112 -0.193 -0.031 0.007

F statistic: 12.11

Second stage model outcome: New cases in following week (natural log)

b p-value

% change in distance traveled -0.021 -0.072 0.029 0.411

Log cases per capita -0.113 -0.214 -0.011 0.03

Relative humidity -0.014 -0.025 -0.002 0.02

N = 1,182 county-week observations from 394 counties. 

First stage model uses precipitation and temperature to predict change in distance traveled. 

Second stage model estimates causal effect of distance traveled on new cases of Covid-19. 

All variables enter the model as first differences within counties. 

Models include calendar week fixed effects not shown in the table. 

Models are weighted by county population, standard errors are clustered within counties.

95% CI

95% CI



 

 

 

Table S2. Effects of change in distance traveled on new cases of Covid-19 in high-density counties

First stage model outcome: Percentage change in distance traveled

b p-value

Precipitation -2.032 -3.081 -0.261 0.025

High temperature 0.24 0.093 0.387 0.001

Log cases per capita -0.048 -0.683 0.587 0.882

Relative humidity 0.051 -0.027 0.128 0.199

F statistic: 9.57

Second stage model outcome: New cases in following week (natural log)

b p-value

% change in distance traveled 0.095 0.029 0.16 0.004

Log cases per capita 0.094 -0.076 0.263 0.28

Relative humidity -0.005 -0.016 0.005 0.34

N = 1,182 county-week observations from 394 counties. 

First stage model uses precipitation and temperature to predict change in distance traveled. 

Second stage model estimates causal effect of distance traveled on new cases of Covid-19. 

All variables enter the model as first differences within counties. 

Models include calendar week fixed effects not shown in the table. 

Models are weighted by county population, standard errors are clustered within counties.

95% CI

95% CI


